Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal–nitrogen coordination
نویسندگان
چکیده
Replacement of noble metals in catalysts for cathodic oxygen reduction reaction with transition metals mostly create active sites based on a composite of nitrogen-coordinated transition metal in close concert with non-nitrogen-coordinated carbon-embedded metal atom clusters. Here we report a non-platinum group metal electrocatalyst with an active site devoid of any direct nitrogen coordination to iron that outperforms the benchmark platinum-based catalyst in alkaline media and is comparable to its best contemporaries in acidic media. In situ X-ray absorption spectroscopy in conjunction with ex situ microscopy clearly shows nitrided carbon fibres with embedded iron particles that are not directly involved in the oxygen reduction pathway. Instead, the reaction occurs primarily on the carbon-nitrogen structure in the outer skin of the nitrided carbon fibres. Implications include the potential of creating greater active site density and the potential elimination of any Fenton-type process involving exposed iron ions culminating in peroxide initiated free-radical formation.
منابع مشابه
Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2.
Control over the architectural and electronic properties of heterogeneous catalysts poses a major obstacle in the targeted design of active and stable non-platinum group metal electrocatalysts for the oxygen reduction reaction. Here we introduce Ni3(HITP)2 (HITP=2, 3, 6, 7, 10, 11-hexaiminotriphenylene) as an intrinsically conductive metal-organic framework which functions as a well-defined, tu...
متن کاملActive and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction
Nanostructured carbon-based materials, such as nitrogen-doped carbon nanotube arrays, Co3O4/nitrogen-doped graphene hybrids and carbon nanotube-graphene complexes have shown respectable oxygen reduction reaction activity in alkaline media. Although certainly promising, the performance of these materials does not yet warrant implementation in the energy conversion/storage devices utilizing basic...
متن کاملA highly efficient electrocatalyst for the oxygen reduction reaction: N-doped ketjenblack incorporated into Fe/Fe3C-functionalized melamine foam.
Polarization caused by the oxygen reduction reaction (ORR) on cathodes still contributes significantly to the energy efficiency loss of metal–air batteries and fuel cells. Thus, ways of increasing the ORR kinetics while maintaining fast mass transfer is a grand challenge in the development of a new generation of metal–air batteries and fuel cells. Catalysts based on platinum and other precious ...
متن کاملNovel Non-Precious metals for PEMFC
A major impediment to the commercialization of fuel cell technology is the low activity of platinum electrocatalyst used for oxygen reduction. Pt has been alloyed with transition metals like Ni, Co etc, which show higher activity, compared to pure Pt. However, Pt remains, an expensive metal of low abundance, and hence, finding a non-noble-metal alternative is of interest. The overall objective ...
متن کاملOxygen reduction reaction in a droplet on graphite: direct evidence that the edge is more active than the basal plane.
Carbon-based metal-free electrocatalysts for the oxygen reduction reaction (ORR) in alkaline medium have been extensively investigated with the aim of replacing the commercially available, but precious platinum-based catalysts. For the proper design of carbon-based metal-free electrocatalysts for the ORR, it would be interesting to identify the active sites of the electrocatalyst. The ORR was n...
متن کامل